
Kernel-Based Extensions of Exponential Family
Distributions

Andrew Suciu, Jessica Taylor

March 14, 2014

1 Introduction

An exponential family distribution is of the form:

pη(x) = exp(ηTφ(x)− A(η) +B(x))

We consider an extension of the form:

pη(x) = exp(〈η,Rx〉 − A(η) +B(x))

where Rx = k(x, ·) is the representer of x ∈ X in an RKHS H corresponding to kernel k ∈
X × X → R, 〈·, ·〉 is the inner product in H, and A(η) = log

∫
exp(〈η,Rx〉+B(x))dx.

This family of distributions has been considered in previous work. Smola and Canu define
kernelized exponential families and develop some techniques using them; notably, kernelized
classification, regression and novelty detection ??. However, in this process, the authors do not
completely handle density estimation. This is unfortunate, because we expect this extension
to perform well for density estimation due to the fact that pη can approximate any continuous
distribution arbitrarily well when k is a universal kernel. Therefore, we will consider the task
of setting η to maximize likelihood of values x1, ..., xn without overfitting. We succeed and
demonstrate the estimation method on sample datasets.

2 Density Estimation

The function to be maximized is:

f(η) =
n∑
i=1

log pη(xi)− ψ(η)

where ψ(η) = α
2
‖η‖2H is a regularization term. We will end up optimizing this using Newton’s

method:

ηt+1 = ηt + ∆

∆ = −(Hf(η))−1∇f(η)

1

Note that the Hessian is a matrix in RKHS space. Although matrices are typically only
defined for vector spaces Rn, it is easy to consider them as a binary function in the RKHS of
type X ×X → R, as vectors in the RKHS are unary functions of type X → R. If M is a matrix
in H and v is a vector in H, then the matrix multiplication is defined as (Mv)(x) = 〈M(x, ·), v〉,
analogous to ordinary matrix multiplication (Mv)i = Mi,∗v. The outer product is defined as
(f ⊗ g)(x, y) = f(x)g(y).

The gradient and Hessian of f can be expressed as:

f(η) =
n∑
i=1

log pη(xi)− ψ(η)

∇f(η) =
n∑
i=1

Rxi − nEη[RX]− αη

Hf(η) = n(Eη[RX]⊗ Eη[RX]− Eη[RX ⊗RX])− αIH
This result is derived in the second appendix.

The Newton delta is computed as:

∆ = −(Hf(η))−1∇f(η)

Suppose we take samples y1, ..., ym from pη. It will be useful to define xn+i = yi, so all samples
(observed and sampled) are in the same list. Also assume that η can be expressed as a linear
combination of additional values xn+m+1, ..., xn+m+r, so that η =

∑r
i=1 θiRxn+m+i

. Then we can
estimate the gradient and Hessian as:

∇f(η) =
n∑
i=1

Rxi −
n

m

m∑
j=1

Ryi − αη

Hf(η) = − n
m

m∑
i=1

Ryi ⊗Ryi + n

(
1

m

m∑
i=1

Ryi

)
⊗

(
1

m

m∑
i=1

Ryi

)
− αIH

We would like a finite representation of the gradiant, Hessian, and Newton delta as coeffi-
cients multiplied by representers (or outer products of represents):

∇f(η) =
n+m+r∑
i=1

diRxi

Hf(η) =
n+m+r∑
i=1

n+m+r∑
j=1

hi,jRxi ⊗Rxj − αIH

∆ =
n+m+r∑
i=1

δiRxi

To get the correct values, we will set:

di = 1 for 1 ≤ i ≤ n

di = −n/m for n+ 1 ≤ i ≤ n+m

di = −αθi−n−m for n+m+ 1 ≤ i ≤ n+m+ r

2

hi,j = [n+ 1 ≤ i ≤ n+m][n+ 1 ≤ j ≤ n+ 1]
(n

m2
− [i = j]

n

m

)
We can also write d to represent the vector of di values, δ to represent the vector of δi

values, and H to represent the matrix of hi,j values. The task is now to compute δ.
Rearranging the definition of ∆ yields:

Hf(η)∆ = −∇f(η)(
x→

〈
n+m+r∑
i=1

n+m+r∑
j=1

hi,jRxi(x)Rxj ,

n+m+r∑
i=1

δiRxi

〉)
− α∆ = −∇f(η)

n+m+r∑
i=1

n+m+r∑
j=1

hi,jδjk(xi, xj)Rxi − α
n+m+r∑
i=1

δiRxi = −
n+m∑
i=1

diRxi

In particular, for every integer 1 ≤ l ≤ n+m+ r,〈
n+m+r∑
i=1

n+m+r∑
j=1

hi,jδjk(xi, xj)Rxi − α
n+m+r∑
i=1

δiRxi , Rxl

〉
=

〈
−

n+m∑
i=1

diRxi , Rxl

〉
n+m+r∑
i=1

n+m+r∑
j=1

hi,jδjk(xi, xj)k(xi, xl)− α
n+m+r∑
i=1

δik(xi, xl) = −
n+m+r∑
i=1

dik(xi, xl)

We are solving for δ, so it will be useful to write this as a linear constraint on δ:

n+m+r∑
j=1

δj

(
n+m+r∑
i=1

hi,jk(xi, ij)k(xi, xl)− αk(xj, xl)

)
= −

n+m+r∑
i=1

dik(xi, xl)

(KHK− αK)l,∗δ = −(Kd)l

So δ can be found by solving a system of linear equations:

δ = (αK−KHK)−1Kd = (K(αI −HK))−1Kd = (αI −HK)−1d

Let Hm×m indicate the nonzero values in H, and K =

Kn×n Kn×m Kn×r
Km×n Km×m Km×r
Kr×n Kr×m Kr×r

. Then

HK =

 0n×n 0n×m 0n×r
Hm×mKm×n Hm×mKm×m Hm×mKm×r

0r×n 0r×m 0r×r


At this point, due to the definition of d and the fact that HK has all zeros in columns not

between n+ 1 and n+m, it is possible to infer that

δi =
1

α
for 1 ≤ i ≤ n

δi = −θi−n−m for n+m+ 1 ≤ i ≤ n+m+ r

3

Given these values, it is possible to compute δn+1..n+m:

δn+1..n+m = (αI −Hm×mKm×m)−1(dn+1..n+m + Hm×mKm×nδ1..n + Hm×mKm×rδn+m+1..n+m+r)

At this point, running Newton’s method is straightforward. In each iteration, first take m
samples from ηt. Next, set

ηt+1 =
n+m∑
i=1

δiRxi

This is because the original ηt cancels with
∑n+m+r

i=n+m+1 δiRxi , making the computation more
efficient, since the number of samples necessary to store η does not grow over time.

To test out these methods, we applied it to 2-dimensional density estimation. We used a
Gaussian kernel

k(x, y) = exp

(
−n
2σ2

1

(x1 − y1)2 +
−n
2σ2

1

(x2 − y2)2
)

where σ2
i is the empirical variance of ith component in the observations x1...xn. If we had set

B(x) = 0 uniformly, then the resulting distribution would have an infinite integral. Therefore,
we set B to represent a normal distribution:

B(x) =
−1

2σ2
1

(x1 − µ1)
2 +
−1

2σ2
2

(x2 − µ2)
2

where µi is the empirical mean of the ith component in the observations.

3 Empirical Validation

We ran the method above on 20 randomly selected data samples from the R language’s
‘wavesurge’ dataset containing observations of wave height and the corresponding surge height.
We compared the resulting density estimates to scipy’s kernel density estimator on the same
samples. Empirically, we found that running for more than a few iterations (e.g. 3 vs 10 itera-
tions) did not change our method’s estimates significantly. For the 2874 data points not in the
training set, our method assigned a mean log probability of -1.511, while the KDE assigned a
mean log probability of -3.930. See Figure 1 in the appendix. This indicates that, in certain
cases, our method is competitive with KDE. For comparison across more data sets, see the
third appendix.

4

4 Appendix

4.1 Visual Comparison of Density Estimates

Figure 1: 3D and contour plots of estimated density on two-dimensional ocean wave data. This
data, ‘wavesurge’, can be found in the ‘texmex’ package for the R language.

Our Method Kernel Density Estimator

5

4.2 Derivation of Gradient and Hessian

To find the gradient and Hessian of the objective f , first take the gradient of log likelihood with
respect to a single x value:

log pη(x) = B(x) + 〈η,Rx〉 − A(η)

∇η log pη(x) = Rx −∇ηA(η)

= Rx −∇η log

∫
exp(〈η,Rx′〉 −B(x′))dx′

= Rx −
exp(〈η,Rx′〉+B(x′))Rx′dx

′∫
exp(〈η,Rx′〉+B(x′))dx′

= Rx − Eη[RX]

And also the Hessian:

Hη log pη(x) = Jη(φ(x)− Eη[RX])

= −Jη
(∫

exp(ηTRx′ − A(η) +B(x′))Rx′dx
′
)

= −
∫

exp(ηTRx′ − A(η) +B(x′))Rx′(∇η(η
TRx′ − A(η)))Tdx′

= −
∫

exp(ηTRx′ − A(η) +B(x′))Rx′(Rx′ −∇ηA(η))Tdx′

= −Eη[RX ⊗ (RX − Eη[RX])]

= −Eη[RX ⊗RX] + Eη[RX]⊗ Eη[RX]

which is equal to the negative covarinace matrix of RX under η.
The gradient and Hessian of the regularizer can also be found:

ψ(η) =
α

2
‖η‖2H

∇ψ(η) = αη

Hψ(η) = αIH

where IH is the identity matrix in H, which can be derived as:

〈Rx, v〉 = v(x) = (IHv)(x) = 〈IH(x, ·), v〉

so IH(x, ·) = Rx, i.e. IH = k.
From here it is easy to compute the gradient and Hessian of the objective:

f(η) =
n∑
i=1

log pη(xi)− ψ(η)

∇f(η) =
n∑
i=1

Rxi − nEη[RX]− αη

Hf(η) = n(Eη[RX]⊗ Eη[RX]− Eη[RX ⊗RX])− αIH

6

4.3 Comparison to KDE

In the following table we list the results of training both our proposed method (with a gaussian
kernel) and KDE on various sample datasets commonly packaged with the R language. In each
case, we run both methods on the same 20 samples from the total dataset, then calculate the
mean log probability of observing the remaining data given the initial sample.

Dataset Mean Log Probablity KDE MLP
Yearly Treering Data -9.598 -9.985
Rain, wavesurge -1.511 -3.930
Average Heights of the Rio Negro -7.288 -8.0376
Mauna Loa Atmospheric CO2 -8.074 -6.385
Bivariate Data Set with 3 Clusters -9.358 -9.033
Strikes Duration -4.350 -4.862
Monthly Sunspot Numbers -10.958 -11.824
Galton’s Mid parent child height data -4.443 -4.647
Monthly Sunspot Data -10.936 -11.316
Galton’s Peas -4.590 -4.776
Macdonell’s Data on Height and Finger Length of Criminals -0.753 -1.313
Galton’s data on the heights of parents and their children -4.471 -5.394

7

	Appendix

