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Dominant Assurance Contracts with Continuous Pledges

Many goods produced in the economy can be enjoyed by many different people without 

significantly diminishing their value.  These goods include software, art, and infrastructure and are 

known as public goods.  While they have the potential to bring great benefits to many people, it is 

difficult for the creator of the public good to be paid fairly for creating it.

Suppose an artist produces music that many people love but requires money to produce the 

music, so the artist accepts donations and produces music proportional to the amount of money 

donated.  Each fan would prefer for the artist to receive more money but would rather not personally 

contribute.  This creates a tragedy of the commons situation, as all but the wealthiest self-interested 

fans are unlikely to sponsor the artist.

Some public goods are cheap and beneficial enough to be funded by a single individual or 

corporation.  When this is not the case, people have used various methods to solve the public good 

problem.  One approach, used for infrastructure and some art, is to fund the public goods through 

taxation.  Another approach, intellectual property, consists of regulations that require people to pay 

before enjoying the good.

A third approach to public goods is to induce multiple people to contribute before the good has 

been produced.  Various mechanisms for this have been proposed.

Assurance Contracts

The simplest workable mechanism is the assurance contract.  In an assurance contract, the 

entrepreneur sets a target amount of money to be raised.  Individuals can pledge to contribute some 

amount of money.  If the total of the pledges reaches the target, then the entrepreneur produces the 

public good and takes the pledge money.  If not, then no money is exchanged (Tabarrok 347).  This 
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model is used by Kickstarter to fund creative projects.

Suppose that we restrict pledges to a single monetary value such as $10.  Also suppose each 

individual prefers not to pay money and also prefers for the good to be produced, but would rather pay 

money and have the good produced than not pay money and not have the good produced.  In that case, 

the situation in which exactly the right number of people pledge money to reach the threshold is a Nash

equilibrium.  To see why, first consider the people who have pledged.  They would rather not withdraw 

their pledge because that would cause the good to not be produced, and they are willing to pay the 

pledge money to have the good be produced.  Also consider the people who have not pledged.  They 

have no incentive to pledge, because they will lose money and the good will be produced either way.  

The entrepreneur can set the threshold just below the total social benefit of the good so that the 

condition that each individual would prefer to pay money and have the good produced holds.  This 

theoretical result, that a situation in which the good is produced is a Nash equilibrium, seems to show 

that assurance contracts solve the public good problem.

Dominant Assurance Contracts

Unfortunately assurance contracts have limitations.  Although the project is produced in a Nash 

equilibrium, there are other Nash equilibria in which the project is not produced.  Consider a case 

where the project is $20 short.  The people who have not pledged $10 are indifferent between pledging 

and not pledging, and so are the people who have pledged $10.  Either way, the good will not be 

produced and no one will have to pay.

Dominant assurance contracts, invented by Alexander Tabarrok, solve this problem.  In a 

dominant assurance contract, if the contract fails, then, in addition to not having to pay, the people who 

pledged money will receive a small amount of money (Tabarrok 348).  Once this modification is made 
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to the contract, the good is produced in all pure strategy Nash equilibria.  To see why, consider a case 

where not enough people have pledged money to fund the project.  In this case, the people who have 

not pledged would gain more utility by pledging money.  This is true whether or not the final pledger 

causes the project to be fully funded or not.  If the project becomes fully funded, then the final pledger 

gains utility because they are willing to pay $10 to enjoy the benefits of the project.  If the project does 

not become fully funded, then the final pledger gains utility because they won't pay anything and will 

gain $1 in the form of a failure payment.  

On the other hand, the situation in which exactly enough people have pledged money is a Nash 

equilibrium, by the same reasoning that applies to ordinary assurance contracts.  So, there are pure 

strategy Nash equilibria in which the project is funded, and no pure strategy Nash equilibria in which 

the project is not funded.  If the entrepreneur demands that everyone pledges to provide the service, 

then pledging becomes a dominant strategy (hence the name), and the project is funded in the unique 

Nash equilibrium.  The entrepreneur will not even have to give out failure payments.

Partial Information

The assumption that everyone values the good at the same value is unrealistic.  Tabarrok 

analyzes a Bayesian game in which agents' values for the good vary randomly and are only privately 

known (Tabarrok 351).  Let N = the number of agents, K = the number of agents who must pledge for 

the project to be funded, S = how much an agent pays if they pledge and the project is funded, F = how 

much an agent is paid if they pledge and the project is not funded.  Also assume that agent's values for 

the good (Vi) are independently and identically distributed according to cumulative distribution 

function G(V).

Each agent can either pledge or not.  If they pledge, they will receive utility (1 – Pa)F + Pa(Vi – 
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S), where Pa is the probability of the contract succeeding if the agent pledges.  On the other hand, they 

will receive utility Pr * Vi if they do not pledge, where Pr is the probability of the contract succeeding if 

the agent does not pledge.  We can see that the agent will pledge if and only if (Pa – Pr)Vi > Pa(F + S) – 

F.  This rule can be stated as “pledge if and only if Vi > V*”.  V* is the value for Vi at which the agent 

is indifferent between pledging and not pledging, so we can write the decision rule as (Pa – Pr)V* = 

Pa(F + S) – F.  

To find a symmetric Nash equilibrium, we use the same V* for all agents and expand Pa and Pr 

as a function of V* according to the binomial distribution:

V *(N−1
K−1)(1−G(V *))K−1G (V *)N−K=(F +S ) ∑

x=K−1

N−1

(N−1
x )(1−G (V *))xG(V *)N−1−x−F

The left hand side of this equation can be understood as the utility the agent gets from the possibility of 

being pivotal if they pledge (which is their value V* times the probability that exactly K-1 others 

pledge).  The right hand side is the expected amount the agent will lose in success and failure payments

(which could be negative if failure payments outweigh success payments).  Tabarrok shows that a 

unique V* exists that satisfies this equation, and so V* is determined by G, N, K, S, and F (Tabarrok 

358).

The entrepreneur will only offer the contract if they expect to make a profit.  The entrepreneur's 

expected profit can be written:

P e S E (x | x>K ) – (1– Pe)F E (x | x<K )– PeC

where Pe is the probability of the contract succeeding, x is the number of agents who pledge, and C is 

the cost of providing the service.  Tabarrok shows that this expression can be rewritten as:

V *K (NK )(1−G(V *
))
KG (V *

)
N−K

−P eC
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(Tabarrok 357).  Note that this new expression does not depend directly on either F or S, only the V* 

that they imply.  The entrepreneur can choose V* and K at will to maximize expected profit.  The left 

hand side of the expression is the expected revenue and can be thought of as the number of agents who 

contribute multiplied by the expected utility each agent gets from the possibility of being pivotal.  So, 

the entrepreneur will make the most money by creating a situation in which the agents believe that they

have a significant probability of affecting the outcome.  This is best satisfied by ensuring that K is 

approximately N(1-G(V*)) so that the pivotal probability term is maximized. 

It will be useful to determine how much revenue an entrepreneur can typically expect to make 

in this situation.  If valuations for all agents come from the uniform distribution [0, 1], then the 

entrepreneur will set K to be approximately N/2 and V* to be approximately 0.5 (Tabarrok 354).  In 

that case the entrepreneur's expected revenue is approximately 0.2 * sqrt(N) by the normal 

approximation of the binomial distribution.  Unfortunately this is much less than the total social benefit

0.5 * N.  For example, if N = 1,000,000 and the values for the good range uniformly from $0 to $1, the 

entrepreneur can expect to make approximately $200 while providing a social benefit of $500,000 (if 

the contract succeeds).  This stands in contrast to the perfect information case in which the entrepreneur

could extract any amount less than the total social benefit of the good.

On the other hand, if the valuations are normally distributed in [1, 2], the agent can set K = N 

and V* = 1 to make revenue N.  In this example, the entrepreneur would make $1,000,000 while 

providing a social benefit of $1,500,000.  In general, the entrepreneur can make the most money when 

a significant minimum value can be chosen so that all or almost all of the agents value the good above 

this value.  These cases are rare in practice since often some unknown number of people value the good

at 0.
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Continuous Pledges

Tabarrok's analysis is restricted to binary pledges: each agent can either pledge or not.  This is 

both difficult to enforce (agents can make multiple pledges through third parties) and fails to extract 

higher payments from those who value the good more.  To solve this we will allow agents to pledge 

any amount of money, Ci.  The project will be funded if the total pledges exceed T.  Otherwise agents 

will receive FCi as a failure payment.  We can write the agent's utility:

U (C i)=P s(C i)∗(V i−C i)+(1−P s(C i))∗F∗C i
=P s(C i)∗(V i−(1+F )∗C i)+F∗C i

Where Ps(Ci) is the probability that the contract succeeds given that this agent pledges Ci.  For now we 

ignore the restriction that Ci >= 0.  Note that U(Ci) approaches negative infinity as Ci approaches 

negative infinity, and also as Ci approaches infinity.  Since Ps and therefore U is approximately 

continuous if there are many agents, we can assume that the global maximum is also a local maximum. 

To find the local maximum, we can find the derivative of utility with respect to the agent's contribution:

U ' (C i)=P s ' (C i)∗(V i−(1+F )C i)−P s(C i)∗(1+F )+F=0

P s ' (C i)∗(V i−(1+F )C i)=P s(C i)∗(1+F )−F

V i−(1+F )C i=
P s(C i)∗(1+F )−F

P s ' (C i)

(1+F )C i=V i−
P s(C i)∗(1+F )−F

P s ' (C i)

C i=
1

1+F (V i− P s(C i)∗(1+F )−F

P s ' (C i) )
This final equation is not directly useful because the Ps and Ps' terms depend on Cj for other agents.  We

will assume that Ps' is relatively constant (that is, the effect of the agent's contribution on the probability

of success is roughly linear), so we can use the Taylor approximation Ps(Ci) = Ps(0) + Ps' * Ci:
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C i=
1

1+F (V i−
(1+F )P s(0)+P s '∗C i∗(1+F )−F

P s ' )

2∗C i=
1

1+F (V i−
(1+F )P s(0)−F

P s ' )

C i=
1

2(1+F )(V i−
(1+F )P s(0)−F

P s ' )

=
1

2 (1+F )
(V i−V

*)

Where we have defined V* = 
(1+F )P s(0)−F

P s '
, the minimum Vi for the agent to pledge anything.  

The agent will pledge nothing for Vi <= V*, and steadily pledge more as Vi rises.  V* is independent of 

Vi so we can find the V* for all agents that corresponds to a symmetric Nash equilibrium.  The terms 

Ps(0) and Ps' both depend on other agents' V*; the expression gives the V* that this agent should use 

given that other agents use the V* used to determine Ps.  The agent is not allowed to contribute negative

amounts, so actually C i=
1

2 (1+F )
max(0,V i−V

*
) because we know that if the maximum utility 

occurs at Ci < 0, then the slope will be negative thereafter so the optimal Ci is 0.  

To solve for V* we want to find Ps in terms of V*.  The central limit theorem will be useful here

since we are summing the contributions of many agents.  We will assume that the values Vi are 

distributed exponentially with rate parameter λ and find the expectation and variance for Ci (see 

appendix for details):

E [C i]=
1

2(1+F )λ
e−λV *

Var (C i)=
e−λ V *

(2−e−λV *

)

4 (1+F )
2
λ

2
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Now we can use these numbers to determine the distribution of X-i (total amount raised by agents other 

than agent i).  By the central limit theorem, if there are many agents, the distribution over X-i will 

approach a normal distribution with mean (N-1)E[Cj] and variance (N-1)Var(Cj).  Then we have:

P s(C i)=P(X−i≥T−C i)=1−Φ(T−C i−(N−1)E [C j ]

√(N−1)Var (C j) )

P s(0)=1−Φ(
T−(N−1)E [C j]

√(N−1)Var (C j) )

P s ' (0)=
1

√(N−1)Var (C j)
φ (T−(N−1)E [C j]

√(N−1)Var (C j))
Where Φ is the standard normal CDF and ϕ is the standard normal PDF.  We can plug these values back

into the expression for V*:

V *
=

(1+F )P s(0)−F

P s '
=

(1+F )(1−Φ(T−(N−1)E [C j]

√(N−1)Var (C j)))−F
1

√(N−1)Var (C j)
φ(
T−(N−1)E [C j]

√(N−1)Var (C j) )
Note that E[Cj] and Var(Cj) depend on V* and are as calculated above.  Plugging these values back into

the equation for V*, we can solve for V*.  I have not formally proven this, but in general the right-hand

side (RHS) is decreasing, so only one equilibrium V* exists and it can be calculated numerically by 

binary search.  Here is a graph of both sides of the equation for V* for λ=1, N=100, T=20, F=1:
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One way to interpret this graph is that the RHS (blue line) is the V* an agent would choose if 

they knew everyone else's V*.  The fixed point of this function, indicated by the intersection with the 

green line, is the Nash equilibrium V*.  The extreme slope of the line, which is even more extreme for 

larger N, shows that if the V* for other agents strays away from the Nash equilibrium, the remaining 

agent will strongly react in the opposite direction, pledging large amounts if others are pledging less 

than the equilibrium or pledging nothing if others are pledging above the equilibrium.  

A rational entrepreneur will only offer the deal if they expect to profit.  We can write the 

entrepreneur's expected profit:

E [Π]=(E [ X | X≥T ]−C )P s−FE [X | X <T ](1−P s)
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Where Π is the entrepreneur's profit, C is the cost of providing the service, and the probability of 

success Ps depends on the entrepreneur's choice of T and F.  The E[X | …] terms also depend on T and 

F, and they can be evaluated according to the truncated normal distribution.  Here is a graph showing 

the entrepreneur's profit for  λ=1/$, N=1000, C=0 for various values of T and F:

The maximum profit is $10.90 at T=90, F=0.9, with a 51% chance of the contract succeeding.  It 

should be interesting to compare this graph with a similar one for probability of success:
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As expected, increasing T always decreases the probability of success.  Increasing F generally 

increases probability of success but not for extreme values.  For some intuition on why higher failure 

payments might decrease the probability of success, consider the case of an agent who has decided to 

contribute some amount.  If failure payments are high they will be less inclined to contribute higher 

amounts because this will increase the probability of success, decreasing the probability of receiving 

failure payments.

Variations on the parameters produce different expected profit.  Scaling 1/λ and C by the same 

value will also scale profit by that same multiplier, which is intuitive since profit should not depend on 

the unit of money.  Profit also scales roughly linearly with √N .  For N=1,000,000, the entrepreneur 
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will set T=$80,000 and F=1.0 for an expected profit of $345 and a 50% probability of success.  This is 

almost exactly equal to √1,000,000/1000 times the profit for N=1000, $10.90.

Increasing C will decrease profit.  Going back to N=1000, if C=$5 then the entrepreneur will 

select different T and F values for a 41% probability of success and $8.58 in expected profit.  At C=$20

the probability of success drops to 26% and the expected profit drops to $3.66.  In general these 

contracts can fund projects that cost more than their zero-cost profit, although higher costs decrease the

probability of success.  This is intuitive since the entrepreneur will be less inclined to select T and F for

the probability of success to be high.

It will be useful to compare the profit of the entrepreneur with continuous pledges with the 

profit for the binary pledges analyzed in Tabarrok's paper.  At λ =1/$, N=1000, C=$0, the entrepreneur 

will make about $10.17.  At N=1,000,000, the entrepreneur will make about $321, which is 

approximately √1,000,000/1,000∗$10.17 In general profit for large N is proportional to the square 

root of N and is slightly lower than the profit with continuous pledges.

Conclusion

Tabarrok's dominant assurance contracts are a mechanism for public goods to be funded by 

selfish rational agents.  He analyzed expected profit for these contracts when pledges are restricted to 

$0 or $S.  These restricted contracts are quite profitable if the distribution of valuations for the good 

has a significant practical minimum, but only produce profit proportional to the square root of N in the 

more realistic case when a significant number of agents value the good at little or nothing.

I analyzed dominant assurance contracts in which pledges are allowed to be any non-negative 

monetary value.  In the case of exponentially distributed values, they produce profit slightly higher than

that of binary contracts.  This shows that allowing continuous pledges does not significantly impact 
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profit.  It is difficult to restrict pledges when agents can transfer money between each other, so 

continuous pledges should be more practical.

Under partial information and with realistic value distributions, dominant assurance contracts 

only provide profit proportional to the square root of the number of agents.  This problem seems 

difficult to overcome.  Constructing a very profitable contract requires determining the preferences of 

the agents more exactly than simply determining a prior distribution for the agents' values of the good.  

Unfortunately any method of determining the preferences of specific agents gives the agent an 

incentive to underestimate their valuation so they will not be expected to pay as much.  It is unclear 

whether this problem can be resolved in a satisfactory way.  Further research might consider relaxing 

the assumption that valuations are independent or extending the analysis to multiple rounds.
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Appendix: Finding Expectation and Variance of Contributions

First we find the expectation and variance of Ci for an arbitrary distribution over Vi:

C i=
1

2(1+F )
max(0,V i−V

*
)

E [C i]=
1

2(1+F )
P (V i>V

*
)(E [V i−V

* |V i>V
*
])

Var (C i)=
1

4 (1+F )
2 (P (V i≤V

*
)(2(1+F )E [C i])

2
+P (V i>V

*
)E [(V i−V

*
−2(1+F )E [C i ])

2 |V i>V
*
])

=
1

4(1+F )2 (P (V i≤V
*
)P (V i>V

*
)

2E [V i−V
* |V i>V

*
]
2

+P (V i>V
*
)(Var (V i−V

*
−2(1+F )E [C i]|V i>V

*
)+E [V i−V

*
−2(1+F )E [C i] |V i>V

*
]

2
))

=
1

4(1+F )
2 (P (V i≤V

*
)P (V i>V

*
)

2E [V i−V
* |V i>V

*
]
2

+P (V i>V
*
)(Var (V i |V i>V

*
)+P(V i≤V

*
)

2 E [V i−V
* |V i>V

*
]
2
))

=
1

4(1+F )
2 (P (V i>V

*
)Var (V i |V i>V

*
)+P (V i>V

*
)P(V i≤V

*
)E [V i−V

* |V i>V
*
]
2
)

Now we assume that Vi are distributed according to the exponential distribution with rate parameter λ.  

This distribution is convenient because it is memoryless: the distribution Vi – V* | Vi > V* is equal to 

the original distribution over Vi.  Then we can simplify the expectation and variance of Ci:

E [C i]=
1

2(1+F )
P (V i>V

*
)(E [V i−V

* |V i>V
*
])=

1
2(1+F )λ

e−λV *

Var (C i)=
1

4 (1+F )
2 (P (V i>V

*
)Var (V i |V i>V

*
)+P (V i>V

*
)P (V i≤V

*
)E [V i−V

* |V i>V
*
]
2
)

=
1

4(1+F )
2 ( e

−λV *

λ
2 +

e−λ V *

(1−e−λ V *

)

λ
2 )

=
e−λ V *

(2−e−λV *

)

4(1+F )
2
λ

2
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