
Black-Box Reductions in Mechanism Design

Jessica Taylor – jessica.liu.taylor@gmail.com

March 19, 2014

1 Introduction

In their paper On the Impossibility of Black-Box Transformation in Mechanism Design (2011)
[2], Chawla et al. prove some impossibility results about black-box mechanisms. I will give
an overview of the problem, summarize prior work, summarize the results of this paper, go
through some proofs, and offer additional commentary and open questions.

In mechanism design, it is necessary to design a mechanism that will ask bidders for their
bids (representing how they value different allocations) and then produce an allocation that
satisfies some problem-specific feasibility constraint. Chawla et al. consider the following
criteria to be necessary for all mechanisms:

1. When bidders bid honestly and bidders’ bids come from some distribution known to the
mechanism, it must, in expectation, approximately optimize an objective (usually social
welface), within a constant factor of the optimal objective value. This criterion is called
average-case approximation.

2. If a prior on all bidders’ preferences is common knowledge, then some payment rule exists
so that honest bidding is a Bayes-Nash equilibrium (Bayesian Information Criterion/BIC).

3. The mechanism must run in polynomial time.

In addition, they look at 2 additional criteria that may be added to these bare minimum criteria:

1. Given honest bids, the mechanism must, in expectation over randomization in the mech-
anism, approximately optimize the objective within a constant factor (worst-case approx-
imation).

2. If other bidders’ bids are unknown and no prior is given, then some allocation rule exists
so that bidding honestly yields the highest expected utility regardless of others’ bids
(Truthful in Expectation/TIE). TIE is a stronger condition than BIC.

Often, it is impossible to satisfy the bare minimum criteria, as the problem does not admit a
polynomial-time constant-factor approximation. Therefore, it is appealing to look at black-box
reductions from mechanism design to algorithm design. A black-box reduction is a mechanism
that is given access to an algorithm that approximately optimizes the objective given valuations.
The reduction may make a polynomial number of calls to this algorithm.

1

2 PREVIOUS WORK

Note the subtle difference between average-case approximation and worst-case approxima-
tion. Average-case approximation states that the mechanism must approximately optimize
the objective in expectation when valuations are drawn from some distribution known to the
mechanism. Worst-case approximation states that, regardless of what the valuations are, the
mechanism must always approximately optimize the objective in expectation, where expecta-
tion is taken over randomness in the mechanism. Using an average-case mechanism usefully
requires knowing the distribution over valuations, while using a worst-case mechanism usefully
does not.

In addition to looking at black-box reductions for maximizing social welfare, the authors
also look at alternative objects. The main alternative objective they look at is makespan: the
minimum ratio of allocation to valuation.

2 Previous Work

Hartline and Lucifer (2010) [4] showed that a polynomial-time average-case approximating BIC
black-box reduction exists in single-parameter settings. Hartline, Kleinberg, and Malekian
(2011) [3] extended this result to multi-parameter settings.

We will focus on the single-parameter setting. To convert an allocation rule to a BIC mech-
anism, it is sufficient to make a modified allocation rule that is monotone. We will transform
each bidder’s valuation (replacing vi with fi(vi)) so that fi(vi) follows the same distribution as
vi. The allocation rule receives the fi(vi)s rather than vis. As long as this modified allocation
rule is monotone, this is a BIC mechanism. Since bidders’ valuations are independent and ap-
plying f does not change the distribution, each bidder can reason independently as if no other
bidder had their valuations modified. Furthermore, the transformation will not worsen social
welfare.

The actual definition of fi is an ironing of the original distribution over valuations. Single
out a bidder i and define fi as follows. There will be some function g from this bidder’s valuation
to their expected allocation. If g is non-monotonic, then it is necessary to iron it out so that it
is. Specifically, find an interval so that g is non-monotonic on part of this interval. If the bid
is within this interval, then resample a different valuation within the interval (proportional to
the valuation’s prior probability). The result of this is that the new function from valuation to
expected allocation (g′) is constant on the interval, as the value was thrown away and resampled.
If the appropriate interval is selected, this will cause g′ to be monotone without changing the
distribution of the valuation or reducing social welfare.

This mechanism is not a black-box reduction because it relies on having access to the
expected allocation function and being able to find nonmonotonicities in it. One problem is
computing payments after we already have a monotone allocation rule. Typically, one would
use Myerson’s lemma compute payments based on an integral of this allocation rule. However,
it is not possible to take the integral of a function provided as a black box. Archer et al. (2003)
[1] provide an algorithm to create an unbiased estimate of this integral, which allows one to
compute appropriate payments.

To produce an approximately monotone allocation rule, the black-box reduction first dis-
cretizes each bidder’s valuation. Then, it uses sampling to estimate each bidder’s expected allo-
cation as a function of valuation. Finally, it uses ironing on this estimated expected allocation

2

4 PROOF FOR SOCIAL WELFARE

function to produce an approximately monotone allocation rule. Due to slight nonmonotonic-
ity, this algorithm might not be BIC, but it will be ε-BIC, meaning that honest bidding is a
ε-Bayes-Nash equilibirum.

3 Results

Chawla et al. summarize the existence of black-box reductions optimizing social welfare with
the following table:

Average-case approximation Worst-case approximation
BIC Yes (Hartline and Lucifer) ?
TIE ? No (proven in paper)

Hartline and Lucifer (2010) previously proved the top left result: a black-box reduction from
algorithm design to mechanism design exists that runs in polynomial-time, approximates the
objective in expectation, and is BIC. The main result of the paper is the “no” in the bottom
right: no black-box reduction exists that runs in polynomial time, always approximates the
objective, and is TIE.

It is important to note what black-box impossibility theorems prove and what they don’t.
If no black-box reduction satisfying certain criteria exists, this does not necessarily rule out the
statement that, whenever an approximation algorithm for this problem exists, a mechanism
satisfying the criteria exists.

The fact that the authors only prove TIE + worst-case approximation impossible is disap-
pointing, because it still leaves open the possibility that TIE + average-case approximation is
possible. A polynomial-time mechanism that is TIE and approximates welfare in expectation
would be limited by the fact that it requires knowing a distribution over valuations a priori,
but it would still be more useful than a BIC mechanism, because it does not require all bidders
to believe in this distribution as the prior.

The authors additionally prove a result for makespan: no polynomial-time black-box re-
duction exists that approximately minimizes makespan in expectation and is BIC. This is a
strong result, as average-case approximation and BIC are the weakest criteria considered. It is
not completely clear when it is worth doing something other than maximizing social welfare,
but this result shows that one particular objective cannot be approximated with a black-box
reduction.

The makespan objective is not additive over bidders (i.e. it cannot be expressed as
∑n

i=1 hi(xi)vi).
The authors do not prove a similarly general result for an additive objective other than social
welfare. However, they do show that one particular strategy for constructing a polynomial-time
BIC black-box reduction that maximizes social welfare does not work for other additive objec-
tives. This is a weak result, because other strategies for constructing a black box reduction for
additive objectives may still work.

4 Proof for Social Welfare

The paper’s main result is that no polynomial-time black-box reduction exists that is TIE and
always approximately optimizes welfare. To prove this, the authors construct a set of possible

3

4 PROOF FOR SOCIAL WELFARE

social welfare problems. Optimizing welfare (even approximately) requires knowing a certain
parameter of the problem. The parameter can only be learned if the mechanism makes certain
queries to the welfare optimization black box. As it is unlikely to make these queries, it is also
unlikely to approximately optimize welfare.

In the constructed family of problems, each bidder has a valuation vi either equal to v or 1,
where 0 < v < 1. So the input to the black box is a subset y ⊆ [n] of bidders with valuation 1,
where [n] = {1..n}. All feasible allocations take the form that some subset y ⊆ [n] of bidders
are allocated a each, written xay.

Let 0 < γ < 1, r ∈ N, and t ∈ N be constants that will be fixed later. We will set v = t/(γn).
Then the constructed family of problems is parameterized by sets V, S, T ⊆ [n] and a number
γ < α < 1, where

|S| = |T | = r3t

|S ∩ T | = r2t

V ⊂ S ∩ T
|V | = rt

It will be useful to set U = S ∩ T . There are 3 feasible allocations: xγ[n], x
1
S, and xαT . Note that

the feasibile set does not depend on V ; instead, V is used to define the allocation algorithm.
Define

nT (y) = |y ∩ T |+ |y ∩ U |
nS(y) = |y ∩ S|+ 2|y ∩ V |

These mostly track |y ∩ T | and |y ∩ S| respectively but double or triple count some items, so
they will be within a factor of 3 of |y∩T | or |y∩S| respectively. There exists an approximation
algorithm to approximately maximize welfare:

AV,S,T,α(y) =


x1
S if nS(y) ≥ t, nS(y) ≥ α|y|, nS(y) ≥ nT (y)

xαT if nT (y) ≥ t, nT (y) ≥ γ|y|, nT (y) ≥ nS(y)

xγ[n] otherwise

The algorithm’s approximation factor (the ratio between the welfare of its output and the
optimal welfare) is at least α/6. The proof given in the paper is somewhat tedious, but the
basic idea is simple. If the algorithm returns x1

S, then the condition ensures that S ∩ y contains
a reasonably high number of items and not much less than T ∩ y. If the algorithm returns xαT ,
then the condition ensures that T ∩y contains a reasonably high number of items and not much
less than S ∩ y. If the algorithm returns xγ[n], then neither S ∩ y nor T ∩ y is especially large,

so xγ[n] is a reasonable allocation in comparison.

The next important claim in the paper is that, if A′ is a TIE mechanism for FV,S,T,α, then
the expected allocation to each agent in U must be at least as large in A′(U) as in A′(V). This
follows from monotonicity of TIE mechanisms and the fact that all feasible allocations allocate
the same amount to each bidder in U :

Start with y = V and consider the amount allocated to each bidder in U according to A′(y).
Now consider adding an additional bidder in U to y. As this bidder’s valuation has increased,

4

4 PROOF FOR SOCIAL WELFARE

due to monotonicity the bidder’s allocation has not decreased. But this bidder is in U , so all
bidders in U have this same allocation which has not decreased from their previous allocation.
More bidders can be added to this set, and the same argument applied, until y = U .

Now suppose that T is a black-box reduction (which may or may not be randomized).
We write A′ = T (AV,S,T,α), which must be TIE. As T is polynomial time, it must make a
polynomial number of calls to AV,S,T,α. In order for T to learn the correct value of α, it must
call AV,S,T,α(y) for some value y such that AV,S,T,α(y) = xαT . This is because the orginial value
of α is unknown, T can only gain information about α by observing the output of AV,S,T,α on
different inputs, and only xαT provides the exact correct value of α.

A key lemma at this point is that, for all y, P (AV,S,T,α(y) = xαT) ≤ e−O(t
r+1), where S, V ,

and α are fixed, and T varies uniformly from all feasible values given S, V .
Define the following variables:

nV = |y ∩ V |
nS = |y ∩ (S \ V)|
n∗ = |y ∩ ([n] \ S)|
mU = |y ∩ (U \ V)|
mT = |y ∩ (T \ S)|

nV , nS, and n∗ are constants that add up to |y|. mU and mT are random variables because
they depend on T . It is easy to see from algorithm definition that AV,S,T,α(y) = xαT if and only
if:

mT + 2nV + 2mU ≥ t

mT + 2nV + 2mU ≥ γ(nV + nS + n∗)

mT + 2nV + 2mU ≥ nS + 3nV

The third inequality implies mT + 2mU ≥ nV . Substituting nV for mT + 2mU in the first
equation yields 3nV ≥ t and thus mT + 2mU ≥ nV ≥ t/3. Therefore, mT +mU ≥ t/6.

Now it will be useful to place a probabilistic lower bound on mT +mU . Let S and V be fixed
and consider the possible values for the set T . T can be any set such that V ⊆ T , |T ∩S| = r2t,
and |T | = r3t. Therefore, T will contain every element in V , a uniformly random subset of S\V
of size r2t−rt, and a uniformly random subset of [n]\S of size r3t−r2t. So, T will contain every
element in V with probability 1, every element in S \ V with probability r2t−rt

r3t−rt = r−1
r2−1 = 1

r+1
,

and every element in n \ S with probability r3t−r2t
n−r3t ≤

r3t−r2t
r5t−r3t = r−1

r2−1 = 1
r+1

.
As a result, as n approaches infinity, Chernoff bounds imply that it becomes highly unlikely

(all but e−O(t/(r+1)) probability) that mT + mU = |y ∩ (T \ V)| will be any less than twice its
expectation (which is at least 1

r+1
|y \ V | = n∗ + nS). Strictly speaking, Chernoff bounds only

work for sums of independent variables, but these random variables (indicators of whether a
particular item intersects with T \ V) are anticorrelated with each other, so Chernoff bounds
should still apply.

So, we have with high probability n∗ + nS ≥ r
2
(mT +mU), which implies:

mT + 2nV + 2mU

nV + nS + n∗
≤ mT + 2nV + 2mU

nS + n∗
≤ mT + 2(mT + 2mU) +mU

nS + n∗
≤ 6(mT +mU)

nS + n∗
≤ 12

r + 1
< γ

5

5 DISCUSSION

which contradicts inequality 2.
A consequence of this lemma is that A′(V) is unlikely to learn the true value of α. Condi-

tioned on knowing V and S (which is more than it knows initially), A′ must assign a maximum
entropy distribution to T . It must feed AV,S,T,α a sequence of y values. By the lemma, none of
these individual y values is at all likely to result in AV,S,T,α returning xαT .

It may be pointed out that that A′ may discover information about the problem by observing
whether A returns x1

S or xγ[n]. However, provided that A does not return xαT , this provides no
information about T or α. This can be seen in 2 cases:

• Suppose nS(y) ≥ nT (y). Then the deciding factor is whether or not nS(y) ≥ t ∧ nS(y) ≥
γ|y|. As nS does not have any dependence on T , this does not provide information about
T or α beyond what is provided by knowing S or V .

• Suppose nS(y) < nT (y). Then A must return either xαT or xγ[n]. We have assumed that
the first cannot happen, so no information is provided.

Induction shows that, no matter what strategy A′ uses, no y value it passes to A is likely to
provide any information on T or α.

A similar lemma states that, for all y, P (AV,S,T,α(y) = x1
S) ≤ e−O(T

r+1
), where U and T are

fixed, and V and S vary from all feasible values given U, T . The proof is quite similar to the
previous lemma. Analogously, it implies that, on input U , A′ is unlikely to discover the true
value of S.

At this point, it will be useful to fix some parameters:

t = n4/20

r = n3/20

γ = n−2/20α ∈ {n−1/20, 1}
v = t/(γn) = n−14/20

On input U , A′ cannot allocate more than α in expectation to each agent in U , because it does
not know S. So by monotonicity, it must not allocate more than α in expectation to each agent
in U on input V either.

Similarly, on input V , A′ will not know α, and so it can only allocate up to n−1/20 in
expectation to each agent in U . By monotonicity, it can only allocate up to n−1/20 in expectation
to each agent in U on input U . On input U , its welfare will be at most |V |n−1/20 + t =
n4/20n3/20n−1/20+n4/20 < 2n6/20. On the other hand, the allocation x1

S yields welfare n7/20. This
is asymptotically better. When α = 1, A will get an approximation factor of 1/6, a constant
factor. Although it may be pointed out that we don’t always get an approximation factor of
1/6 on all problem instances considered (specifically, we get α/6), the black-box reduction does
not know the set of problem instances that the algorithm works for, so it must conservatively
assume that α may be n−1/20.

5 Discussion

The result is only proven for worst-case approximation, not average-case approximation. The
authors note that, to extend this impossibility result to average-case approximation, it is nec-

6

6 WHITE-BOX REDUCTIONS

essary to construct a distribution over valuation profiles under which the black-box reduction
achieves poor welfare in expectation. However, because the black-box reduction knows the
distribution, it can use this information to gain information about the problem. In particular,
the proof relies on running the reduction on sets V and U without the mechanism knowing U
if it given input V , or V if it is given input U . As a result, extending this result to average-case
approximation is difficult.

A significant issue with the proof is that the reduction is only allowed to query the approxi-
mation algorithm with valuation profiles of the form {v, 1}n, and the approximation algorithm
is only guaranteed to approximate the objective if the valuation profile is of this form. However,
if the approximation algorithm could accept non-standard valuation profiles and still approx-
imately maximize welfare, then it would be possible to give the algorithm a valuation profile
in which a single bidder has an extremely high valuation, and all others have 0. If in fact this
bidder is in S ∪ T , this would force the mechanism to reveal the allocation x1

S or xαT .
At this point it will be useful to distinguish between problems and problem instances. These

definitions are slightly different from those in the paper, as the paper allows problems to restrict
valuations to a given set. A problem instance is a set of feasible allocations. A problem is a
set of valid parameters plus a mapping from parameters to problem instances. For example, a
knapsack problem instance with known weights of items (but unknown valuations) is a problem
instance, while a mapping from parameters (weights) to problem instance is a problem. Note
that it is trivial to create a problem that contains one particular problem instance, so the
following results apply to problem instances and not just problems.

It will be useful to consider a stricter definition of an approximation algorithm. We could
require that an approximation algorithm must perform well on all instances of a problem and all
valuation profiles. Since the approximation algorithm presented in the paper is only guaranteed
to approximately maximize welfare for valid valuation profiles, it would not count under this
definition. So it is still an open question whether or not a polynomial-time TIE black-box
reduction exists that approximately maximizes welfare, whenever there is an approximation
algorithm that approximately maximizes welfare on all instances of a problem and all valuation
profiles.

6 White-Box Reductions

As the paper’s main proof relies on the black-box nature of the reduction, it is theoretically
possible that, whenever a polynomial-time approximation algorithm exists for a problem, a
polynomial-time worst-case-approximating TIE (PWATIE) mechanism exists for this problem.
After all, for the problem used in the proof, there exists such a mechanism (assuming the
mechanism is given as input the parameters specifying the problem instance). Since there are
only 3 possible allocations, it is easy to exactly compute the optimal allocation and use VCG
for payments.

Suppose it were true that a PWATIE mechanism always exists for a problem when an
approximation algorithm exists for the problem. This is a major open quesiton in algorithmic
game theory, but it will be useful to imagine what a positive answer would entail. Also assume
that we have some mathematical system for proving things about algorithms (say, ZFC). We
will now consider white-box reductions, which instead of having access to an approximation

7

7 FEASIBILITY ORACLES

black box, know what the problem is. Then there are 3 possibilities:

1. There exists a PWATIE white-box reduction that takes as input a definition of the
polynomial-time-approximable problem (as a set of parameters plus a mapping from pa-
rameter to problem instance) in ZFC in addition to parameters specifying the problem
instance.

2. (1) is not true, but for every polynomial-time-approximable problem, there exists a prov-
ably PWATIE mechanism that takes as input paramaters specifying the problem.

3. For every polynomial-time-approximable problem, there exists a PWATIE mechanism,
but there does not always exist a provably PWATIE mechanism.

That is: either a white-box reduction exists, none exists even though there is a provably correct
mechanism, or there is no provably correct mechanism. (2) is impossible. Given that there al-
ways exists a provably PWATIE mechanism whenever a polynomial-time approximation exists,
the following algorithm is a white-box reduction:

• Take as input γ (a ZFC definition of set of possible parameters), f (a ZFC definition of
a mapping from parameter to set of feasible outcomes), α (parameters for this problem
instance), v (valuations)

• For every string in lexicographic order:

– If the string encodes a tuple containing a program’s source code and a ZFC proof
that the program is a PWATIE mechanism for this problem (γ, f), run the program
(mechanism) on (α, v) and return the result.

The algorithm is guaranteed to run in polynomial time. As a provably correct mechanism
exists, it will be found in a constant number of proof checks. Actually running this mechanism
will take polynomial time. It is also PWATIE, as it will always find and run the same PWATIE
mechanism regardless of α and v.

Now that (2) is proven impossible, it will be useful to consider cases (1) and (3). How
likely you believe (3) is depends on your confidence in ZFC. If (3) is also false, then it may be
possible to create a white-box reduction using ZFC descriptions of the problem, but this is not
especially practical. Therefore, it will be useful to consider other ways of giving the mechanism
information about the feasible set.

7 Feasibility Oracles

We return to black-box reductions, but allow the reduction to query an additional black box
in addition to the approximation algorithm: a feasibility oracle. This oracle takes as input
some allocation. It may either return some allocation that allocates at least as much to every
bidder as the input allocation does, or return null if there is no such allocation. There are
many problems that lack efficient optimal allocation algorithms, but do have efficient feasibility
oracles. For example, it is easy to construct a feasibility oracle for the knapsack problem (where

8

8 PROOF FOR MAKESPAN

valid allocations are 0 if the item is not in the knapsack and 1 if it is): simply check if the items
with nonzero allocation fit in the knapsack.

Returning a greater allocation is good if valuations are non-negative. To handle negative
valuations, it may be useful to give the feasibility oracle the signs of valuations and have it
return a Pareto-superior (or equal) feasible allocation.

For some problems, it is not possible to construct a feasibility oracle. It is sometimes not
even possible to find a feasible solution in polynomial time. For example, we could imagine a
modified knapsack problem where, in addition to weights and values, items also have shininess.
We may define feasible sets of items to be those with under a maximum total weight and above
a minimum total shininess. Now, just finding a feasible allocation is an NP-complete problem
(in fact, it is equivalent to the ordinary knapsack problem where it is necessary for items to
have a total weight under some maximum and a total value above some minimum). Since a
feasibility oracle must return a feasible allocation on the input v = 0, there is no polynomial-
time feasibility oracle for this problem. On the other hand, if a feasible solution cannot be
found in polynomial time, then no polynomial-time approximation algorithm exists either.

For the problem used in the proof, it is easy to see how the black-box reduction could use
the feasibility oracle to determine α, T , and S. Single out each bidder and give the feasibility
oracle an allocation in which this bidder has an extremely small allocation, and all other bidders
are allocated 0. If this bidder is in S \T , the feasibility oracle will return x1

S. If the bidder is in
T \ S, the feasibility oracle will return xαT . The proof appears completely impossible to adapt
for these black-box reduction with access to feasibility oracles, as it relies on hiding the feasible
set from the mechanism.

Unlike a proof-based white-box reduction, a black-box reduction using a feasibility oracle
could be very practical, as it would not rely on proof search. Proving that such a reduction does
not exist appears to be far harder than proving that no black-box reduction (without access
to a feasibility oracle) exists. Whether or not a black-box reduction using a feasibility oracle
exists is an important open question.

As before, we can narrow down to a few possible cases, this time related to black-box
reductions with feasibility oracles rather than white-box reductions:

1. There exists a PWATIE black-box reduction using a feasibility oracle.

2. Some problem instance exists that admits an approximation algorithm but no PWATIE
mechanism.

3. All approximable problem instances have PWATIE mechanisms, but no black-box reduc-
tion with access to a feasibility oracle exists. This may indicate that a more powerful
oracle is necessary.

All of these cases are plausible.

8 Proof for Makespan

The main objective other than social welfare that the paper covers is makespan:

φ(x,v) = max
i

xi
vi

9

8 PROOF FOR MAKESPAN

Each bidder will get utility vixi as before, but the goal of the mechanism is now to minimize
makespan rather than maximize total utility. One way to interpret this is that vi is the speed of
machine i, xi is the amount of work allocated to machine i, so that makespan is the maximum
time taken by any machine to complete its work.

The authors prove that, for any polynomial-time BIC black-box mechanism, there must
be some problem instance and allocation algorithm so that the expected makespan of the
mechanism grows asymptotically faster than the expected makespan of the allocation algorithm.

The problem instance is simple. Some parameter α > 1 is fixed. Each vi (speed) is taken
to be either 1 or α chosen by a fair independent coin flip. Each machine may be assigned a
job of length 0, 1, or α; that is, feasible allocations are in {0, 1, α}n. An additional feasibility
constraint is that the allocation is not equal to some particular xbad ∈ {0, 1, α}n. xbad can be
taken to be a parameter of the problem.

The authors define a randomized allocation algorithm A(xbad). The algorithm proceeds as
follows. Let H be the set of fast machines (which have speed α). If the number of fast machines
|H| is within n3/4 of its expectation n/2, then the algorithm assigns a random set of |H|/

√
n

machines in H (chosen uniformly) to do a task of size α, the rest in H to do a task of size 0,
and all other machines to do a task of size 1. Otherwise, pick a random set of size n3/4 (chosen
uniformly) to do tasks of size α, and the rest to do tasks of size 0. If the resulting allocation
happens to be xbad, then re-run the algorithm.

Chernoff bounds show that for large n, |H| is likely to be close to its expectation, so the

first case will almost always happen (with probability at least 1 − 2e−n
1/4/4. This results in a

makespan of 1, because high-speed machines are assigned tasks of size 0 or α and low-speed
machines are assigned tasks of size 1. In the second case, the makespan will almost always be
equal to α (as a slow machine gets a task of size α), and will never be greater. Therefore, the

algorithm’s expected makespan is no more than 1 + 2αe−n
1/4/4.

It is important to note that this result holds regardless of which random sets the algo-
rithm selects. Therefore, we can define a set of deterministic algorithms D(xbad) such that⋃
B∈D(xbad)

B(v) = Support(A(xbad)(v)). Each B ∈ D(xbad) can be interpreted as a way of

running A(xbad) with a constant sequence of random numbers replacing the output of the ran-
dom number generator. As the bound on expected makespan does not depend on the random
number generator used by A(xbad), the bound applies to all these deterministic algorithms.

Now consider the black-box transformation T , which is given some deterministic B ∈
D(xbad). It does not know the value of xbad. The only way it can know that an allocation
is safe is if it was returned by the algorithm B. This is because, if it makes some queries to the
algorithm and then returns some allocation x that was not returned by B, then we could set
xbad = x and observe that the algorithm still has a nonzero probability of returning x. So we
can assume that T only returns allocations returned by its queries to B; otherwise, it would
have a nonzero probability of returning an infeasible allocation.

The rest of the proof relies on the fact that, to be monotonic, the algorithm must give n3/4

slow machines jobs of size 0 with at least n−1/4 probability. However, given this (and that the
allocation is the result of querying B), it is very likely that its makespan is α. This can be seen
in the 2 different cases. Let v′ be the input to B that results in n3/4 slow machines getting jobs
of size 1. If |H| is close to its mean, then v′ must overestimate the speeds of some machines
(i.e. v′i = α, vi = 1) because in this case B will only ever allocate 0 to a machine if its speed is

10

10 CONCLUSION

α. Probably, at least one of these machines will be given a task of size α. If |H| is far from its
mean, then all machines have some chance of being given a job of size α, so probably at least
one machine with speed 1 will be given a job of size α.

Actually showing that n3/4 slow machines must be given jobs of size 0 with n−1/4 probability
is quite tedious. Eventually, we will set α = 1

4
n1/2, so that the expected makespan of the

original allocation algorithm is Θ(1) while the expected makespan of the black box reduction
is Θ(αn−1/4) = Θ(n1/4). This is asymptotically worse than optimal.

9 Discussion

With a feasibility oracle (modified to handle negative valuations, as explained previously), the
problem considered in the paper is easy. Construct an allocation in which all machines get a
job of size 1, and use the feasibility oracle (with negative signs of vs) to find a feasible allocation
with lower or equal allocations for all machines. One must exist, as there is only one infeasible
allocation. Then, always return this allocation regardless of bids. This guarantees a makespan
no more than 1 and is obviously monotonic.

On the other hand, if the feasibility oracle does not handle negative valuations, then the
problem is not straightforward. The feasibility oracle can be defined to always return an
arbitrary strictly greater allocation than its argument other than xbad, unless its argument is
the maximum allocation, in which it returns its argument. This results in it being very difficult
to gain information about xbad by consulting the feasibility oracle. This problem is much less
likely to afflict social welfare problems, as Pareto-superior allocations will be strictly better for
the objective, unlike in makespan.

Makespan is a weird objective, and it is not clear when it would be used in real-life situations.
However, the result implies that it is not possible to construct a black-box reduction mechanism
to optimize any possible objective functions even under BIC.

We might want to narrow down a set of objectives that may be approximable. For example,
we may consider additive objectives of the form

∑n
i=1 hi(xi)vi. Makespan is not additive, so it

is still an open question whether a black-box reduction exists to solve additive objectives. The
authors present some weak evidence against this by showing that the proof that some mechanism
optimizes welfare under BIC fails if welfare is replaced with another additive objective. However,
this is not at all conclusive, since some different way of handling additive objectives could exist.

10 Conclusion

Hartline and Lucifer [4] constructed a black-box reduction from algorithm design to mechanism
design in the case of BIC and average-case approximation. Chawla et al. prove that this is
impossible in the case of TIE and worst-case approximation. They also prove that, even in
the case of BIC and average-case approximation, it is impossible to approximately minimize
makespan.

Both proofs relies on hiding information about the feasible set from the reduction. There
are a few ways that one could construct a PWATIE reduction even in the face of the paper’s
main result (and a polynomial average-case approximate TIE reduction for makespan). First,

11

REFERENCES REFERENCES

one could require the approximation algorithm to perform well on all valuation profiles, not
just ones in a restricted set. Second, one could create a white-box reduction that takes as input
a description of the problem. It is possible to prove that this exists (using proof search) as
long as there is always a provably PWATIE mechanism whenever there is a polynomial-time
approximation algorithm. Third, one could give the black-box reduction access to a feasibility
oracle, which it can use to find feasible allocations. If the reduction has access to a feasibility
oracle, then the paper’s approach of hiding information from the mechanism will no longer
work, and an impossibility proof (if it exists) will take a completely different form.

On the Impossibility of Black-Box Transformations in Mechanism Design contributes im-
portant impossibility results that disallow certain black-box reductions, but it still leaves many
open questions. There are still multiple avenues of attack that could yield useful reductions.

References

[1] A. Archer, C. Papadimitriou, K. Talwar, and E. Tardos. An approximate truthful mecha-
nism for combinatorial auctions with single parameter agents. In Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’03, pages 205–214,
Philadelphia, PA, USA, 2003. Society for Industrial and Applied Mathematics.

[2] S. Chawla, N. Immorlica, and B. Lucier. On the impossibility of black-box transformations
in mechanism design. CoRR, abs/1109.2067, 2011.

[3] J. D. Hartline, R. Kleinberg, and A. Malekian. Bayesian incentive compatibility via match-
ings. In Proceedings of the Twenty-second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’11, pages 734–747. SIAM, 2011.

[4] J. D. Hartline and B. Lucier. Bayesian algorithmic mechanism design. CoRR, abs/0909.4756,
2009.

12

	Introduction
	Previous Work
	Results
	Proof for Social Welfare
	Discussion
	White-Box Reductions
	Feasibility Oracles
	Proof for Makespan
	Discussion
	Conclusion

