
Probabilistic Oracle Machines and Nash Equilibria (Draft)

Jessica Taylor – jessica@intelligence.org

Benja Fallenstein – benja@intelligence.org

February 7, 2015

1 Introduction

In many situations, programs would like to predict the output of other programs. They could
simulate the other program in order to do this. However, this method fails when there are any
cycles (i.e. program A is concerned with the output of program B which is concerned with the
output of program A). Furthermore, if a procedure to determine the output of another program
existed, then it would be possible to construct a liar’s paradox of the form “if I return 1, then
return 0, otherwise return 1”.

These paradoxes could be resolved by using probabilities. Define M to be the set of prob-
abilistic Turing machines (which will here be defined as Turing machines that are allowed to
flip coins that have rational probabilities of coming up heads) that can call an oracle O during
their execution, and may return either 0 or 1. O functions as a (possibly randomized) procedure
that predicts whether another program returns 1 with at least some probability. O must always
return either 0 or 1. Additionally, we would like O to satisfy a reflection principle: for each
M ∈M and probability p, we would like

• P (M(O) = 1) > p⇒ P (O(M, p) = 1) = 1

• P (M(O) = 0) > 1− p⇒ P (O(M, p) = 0) = 1

where M(O) is a random variable that results from observing the return value of program M
with access to oracle O. Note that, although we focus on always-halting machines in this paper,
in general M(O) might never halt, in which case we take M(O) = ∅, a special symbol distinct
from 0 and 1. The reflection principle roughly states that the oracle correctly predicts the
1-returning probabilities of machines when those machines have access to this same oracle.

Graphically, we could display this requirement as follows:

1



2 RECOVERING NASH EQUILIBRIA FROM EXPECTED UTILITY MAXIMIZATION

P(M(O) = 1) P(M(O) = ∅) P(M(O) = 0)

P(O(M, p) = 1) = 1 P(O(M, p) = 1) = ? P(O(M, p) = 1) = 0

p=0 p=1

What happens if we define a liar’s paradox that tries to output the opposite of what it
outputs? This machine can be defined using quining as M(O) = 1−O(M, 0.5). But we can set
P (O(M, 0.5) = 1) = P (O(M, 0.5) = 0) = 0.5, and there is no paradox: the program outputs 1
half the time and 0 the other half of the time. In fact, there does exist an oracle satisfying the
reflection principle. We will prove a weaker version of this result later.

2 Recovering Nash equilibria from expected utility max-

imization

As one application of these machines, suppose we have a collection of m players that are playing
a normal form game with each other. Each player i may select any pure strategy in the set
of actions Ai. After all strategies a1, ..., an have been selected, each player i receives utility
Ui(a1, ..., an). W will write Ui(a−i, x) as shorthand for Ui(a1, ..., ai−1, x, ai+1, ..., an). For now,
assume each player has 2 actions, so Ai = {0, 1}; we will see later how to extend this framework
to more than 2 actions.

We want to specify each player as a probabilistic Turing machine having access to an oracle,
and we want this machine to always halt within a bounded number of steps. Each player
chooses an action that maximizes expected utility. Therefore, each player will use the oracle to
predict other players’ strategies and then select a utility-maximizing action.

Assume without loss of generality that all utilities are between 0 and 1. With this assump-
tion, we can go on to construct a machine Ei whose probability of returning 1 is equal to

E
[
Ui(a−i,1)−Ui(a−i,0)+1

2

]
. If this machine returns 1 with probability at least 0.5, then Ui(a−i, 1) ≥

Ui(a−i, 0), and therefore 1 is a utility-maximizing action for player i; conversely, if this ma-
chine returns 0 with probability at least 0.5, then 0 is a utility-maximizing action for player 1.
Therefore, we can represent player 1 as a machine Mi = O(Ei, 1/2).

Ei will simulate each other player (which will just end up making a similar oracle call) to

get a−i, and then flip a coin that has probability Ui(a−i,1)−Ui(a−i,0)+1
2

of returning 1. Since the

return value of Ei is an unbiased estimate of E
[
Ui(a−i,1)−Ui(a−i,0)+1

2

]
, the probability of returning

1 will be this expectation. This does require some quining in order to define this machine as
having access to the source code of other machines that have access to this machine’s source
code; however, Kleene’s recursion theorem ensures that we can do this.

Now, we note that if O satisfies the reflection principle, then the mixed strategy specified
by the probabilities O assigns to O(E1, 1/2), ..., O(En, 1/2) form a Nash equilibrium. This is

2



3 EQUIVILANCE WITH NASH EQUILIBRIA

because each player plays a best response to the other players’ mixed strategies as specified by
the oracle.

How can we extend this analysis to players with more than 2 strategies? Suppose player i
has available strategies {0, 1, ..., ki − 1} and is currently picking between picking 0 and picking
a different strategy. We would like to construct a machine whose probability of returning 1 is

equal to E
[
Ui(a−i,ai,≥1)−Ui(a−i,0)+1

2

]
, where ai,≥1 is a random variable representing what player

i would do if strategy 0 were unavailable. Naturally, we can represent this random variable
using more machines: one choosing between strategy 1 and any strategies after 1, one choosing
between strategy 2 and any strategies after 2, and so on. Recursively, define machines Ei,≥j
and random variables ai,≥j such that:

P (Ei,≥j = 1) =
Ui(a−i, ai,≥j+1)− Ui(a−i, j) + 1

2
for j ≤ ki − 1

ai,≥ki−1 = ki − 1

ai,≥j = ai,≥j+1 for j ≤ ki − 2, O(Ei,≥j, 1/2) = 1

ai,≥j = j for j ≤ ki − 2, O(Ei,≥j, 1/2) = 0

ai = ai,≥0

What is interesting about this construction is that the players ended up playing a Nash
equilibrium by predicting the output of each other’s programs. Unlike in standard game theory,
other players are not primitive entities: they are simply programs that happen to be constructed
in a particular way.

3 Equivilance with Nash equilibria

So, we can use the probabilistic oracle to find Nash equilibria in arbitrary normal-form games.
It is interesting that we can also go the other direction: given any finite set of probabilistic
Turing machines with access to an oracle that only call other programs in this set, and which
each always halts within time t, we can construct a normal-form game whose Nash equilibria
correspond to reflective oracles assigning probabilities to all these machines and all queries they
might make. Note that it is easy to ensure that we have a finite set of machines that only call
other machines in this set by bounding the length and computing power of each machine: due
to bounded computing power, it will be impossible to construct a query about a large program
to pass to the oracle.

To begin, we must start by showing that we can construct normal form games whose Nash
equilibria must satisfy some of an important class of polynomial constraints on players’ mixed
strategies p1, ..., pn. These polynomial constraints will be used to encode the reflection principle.

Suppose we have an incomplete specification of a normal form game in which each player
has 2 possible actions 0 and 1, and we would like to modify it so that in any Nash equilibrium,
player i will have a specific probability p of playing 1. We do this by adding a new player j to
the game and setting Ui and Uj such that they play a variant of the matching pennies game:

aj = 0 aj = 1
ai = 0 Ui = 1, Uj = 0 Ui = 0, Uj = p
ai = 1 Ui = 0, Uj = 1− p Ui = 1, Uj = 0

3



3 EQUIVILANCE WITH NASH EQUILIBRIA

In this game, in every Nash equilibrium, we have pi = p. This claim is proven in the
appendix.

What if we want the probability p to depend on the mixed strategies of other players
k1, ..., km? We could choose to vary p as a function of some of the other players’ actions
p = f(ak1 , ..., akm) for any f whose image is a subset of [0, 1]. Due to independence among all
actions and maximization of expected utility, we can treat the effective value of p (and therefore
pi) as the expected value of p across independent draws from the mixed strategies:

pi = Eak1∼Bernoulli(pk1 ),...,akm∼Bernoulli(pkm )[f(ak1 , ..., akm)]

=
∑

ak1∈{0,1},...,akm∈{0,1}

f(ak1 , ..., akm)
m∏
l=1

Pakl∼Bernoulli(pkl )
(akl)

=
∑

ak1∈{0,1},...,akm∈{0,1}

f(ak1 , ..., akm)
m∏
l=1

(aklpkl + (1− akl)(1− pkl))

So we can require that in a Nash equilibrium, pi is a polynomial function of pk1 , ..., pkm with
this form.

Now let us see how to encode the reflection principle as a set of polynomial constraints of
this form. To simplify matters, let us note that any finite probabilistic oracle machine can be
expanded into a finite state machine where each state is one of the following kinds:

• A state that immediately halts the program and returns either 0 or 1.

• A state that, for some rational number p, goes to some state with probability p and
another state with probability 1− p.

• A state that queries the oracle with some (M, p), goes to some state if O(M, p) = 1, and
goes to a different state if the oracle returns 0.

Furthermore, note that it is unnecessary to have both the notion of a machine and a program
state; we could represent each program state as a machine that simulates the original machine
starting from the given state.

Assume we can enumerate all possible machine states s1, ..., sm and oracle calls of the form
(si, q). Now we will want to create a normal form game that has players representing each state
and oracle call. We can map each machine state si to a player with index i, and we can map
each oracle call (si, q) to a player with index g(si, q) > m. We would like these players’ mixed
strategies to be set so that for any si, pi equals the probability that si eventually returns 1, and
we would like pg(si,q) to equal the probability that the oracle call (si, q) returns 1. Consider the
different types of machine states:

• For a state si that immediately halts and returns 0, it is trivial to set player i’s utility
function such that they always play 0 and so pi = 0. Same goes for a state that returns
1.

4



4 APPENDIX: NASH EQUILIBRIA IN MATCHING PENNIES

• For a state that goes into state sl with rational probability q and state sr with probability
1 − p, we would like pi = qpl + (1 − q)pr. Luckily this is a polynomial of pl and pr that
has the form we want.

• For a state that queries the oracle with (so, q) and then goes into state sl if the oracle
returns 0 and sr if it returns 1, we would like pi = pg(o,q)pl + (1− pg(o,q))pr. This is also a
polynomial having the form we want.

We also need to directly encode the reflection principle. For this, we set player g(i, p)’s
utility function to the following:

ai = 0 ai = 1
ag(i,p) = 0 Ug(i,p)=p Ug(i,p)=p

ag(i,p) = 1 Ug(i,p) = 0 Ug(i,p) = 1
Due to this utility function, in any Nash equilibrium we have p > pi ⇒ pg(i,p) = 0 and

p < pi ⇒ pg(i,p) = 1, which encodes the reflection principle.
So, we can set up a game such that we can compute, from any Nash equilibrium, a reflective

oracle for this set of machines. Therefore, we have shown that the problem of computing a
reflective oracle defined on a finite set of programs all terminating within some time can be
reduced to the problem of computing a Nash equilibrium. This shows by construction that
such a reflective oracle always exists.

4 Appendix: Nash Equilibria in Matching Pennies

We have a 2 by 2 game: Player Row has strategies Up and Down, player Column has strategies
Left and Right. The payoffs of (Row, Column) are as follows:

(1, 0) (0, x)
(0, 1− x) (1, 0)

Write p for the probability that Row plays Down. I claim that for every x ∈ [0, 1], at
Nash equilibrium we have p = x. (Since this is a good old finite game, we know that a Nash
equilibrium always exists.)

• Case 1: 0 < x < 1.

Suppose that there’s a Nash equilibrium where Column plays Left. Then Row would play
Up, but then Column would strictly prefer Right, contradiction.

Suppose that there’s a Nash equilibrium where Column plays Right. Then Row would
play Down, but then Column would strictly prefer Left, contradiction.

So at every Nash equilibrium, Column must mix between strategies.

Thus, at equilibrium, Column must be indifferent between Left and Right.

This is equivalent to p(1− x) = (1− p)x.

This implies p > 0, since otherwise we’d have 0(1 − x) = (1 − 0)x, i.e. 0 = x, but we
assumed 0 < x < 1.

5



4 APPENDIX: NASH EQUILIBRIA IN MATCHING PENNIES

Thus, we can divide the equation by px, yielding:

(1− x)/x = (1− p)/p

⇔1/x− 1 = 1/p− 1

⇔ ∗1/x = 1/p

⇔x = p

• Case 2: x = 0.

This gives us the following payoff matrix:

(1, 0) (0, 0)
(0, 1) (1, 0)

Suppose that there’s a Nash equilibrium with p > 0. Then at this equilibrium, Column
must play Left; but if Column plays Left, then Row strictly prefers Up, contradiction to
p > 0. Hence, we must have p = 0 = x.

• Case 3: x = 1.

This gives us the following payoff matrix:

(1, 0) (0, 1)
(0, 0) (1, 0)

Suppose that there’s a Nash equilibrium with p < 1. Then at this equilibrium, Column
must play Right; but if Column plays Right, then Row strictly prefers Down, contradiction
to p < 1. Hence, we must have p = 1 = x.

6


